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ARTICLE INFO ABSTRACT

Article history: Background: Fibromyalgia is a complex, relatively unknown disease characterised by chronic, widespread muscu-
Received 12 March 2019 loskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous sys-
Received in revised form 24 June 2019 tem (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders. To gain an insight
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- ) into the pathogenesis of fibromyalgia and identify diagnostic biomarkers, we combined different omics tech-
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niques to analyse microbiome and serum composition.
Methods: We collected faeces and blood samples to study the microbiome, the serum metabolome and circulating

get)};vggjzigia cytokines and miRNAs from a cohort of 105 fibromyalgia patients and 54 age- and environment-matched healthy
Gut microbiota individuals. We sequenced the V3 and V4 regions of the 16S rDNA gene from faeces samples. UPLC-MS metabo-
Pain lomics and custom multiplex cytokine and miRNA analysis (FirePlex™ technology) were used to examine sera
Metabolomics samples. Finally, we combined the different data types to search for potential biomarkers.

Cytokines Results: We found that the diversity of bacteria is reduced in fibromyalgia patients. The abundance of the
miRNAs Bifidobacterium and Eubacterium genera (bacteria participating in the metabolism of neurotransmitters in the

Omics integration host) in these patients was significantly reduced. The serum metabolome analysis revealed altered levels of glu-

tamate and serine, suggesting changes in neurotransmitter metabolism. The combined serum metabolomics and
gut microbiome datasets showed a certain degree of correlation, reflecting the effect of the microbiome on met-
abolic activity. We also examined the microbiome and serum metabolites, cytokines and miRNAs as potential
sources of molecular biomarkers of fibromyalgia.
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Conclusions: Our results show that the microbiome analysis provides more significant biomarkers than the other
techniques employed in the work. Gut microbiome analysis combined with serum metabolomics can shed new
light onto the pathogenesis of fibromyalgia. We provide a list of bacteria whose abundance changes in this dis-
ease and propose several molecules as potential biomarkers that can be used to evaluate the current diagnostic

criteria.

This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research in context
Evidence before this study

Fibromyalgia is a complex disease with chronic pain as its primary
symptom. To date, no molecular biomarkers exist for it, leaving its
diagnosis up to subjective questionnaires. Several alterations in fi-
bromyalgia patients have pointed towards the central nervous sys-
tem as the origin of this pathology. The gut microbiome can
influence the CNS through the gut-brain axis.

Added value of this study

Employing microbiome and metabolomics analysis along with cy-
tokine and miRNA profiling we identified several alterations be-
tween healthy controls and fibromyalgia patients that could be
used as potential biomarkers. We also studied how the
microbiome and metabolomics datasets correlated with each
other to elucidate the role of microbiome alterations in host
metabolism.

Implications of all available evidence

Taken together, this study provides candidate molecular bio-
markers for fibromyalgia, and supports an alteration of neurotrans-
mitter levels in fibromyalgia patients.

1. Background

Fibromyalgia is a complex disease of unknown pathophysiology, for
which no specific molecular biomarkers or biochemical alterations have
been identified. In 1990, the American College of Rheumatology (ACR)
recognised this syndrome as a disease and proposed the Widespread
Pain Index (WPI), determined by measuring tenderness on pressure at
18 defined points, as a major diagnostic indicator. In 2010, the ACR in-
troduced the Severity Score (SS), which also takes into account the asso-
ciated symptoms and their severity [102]. Thus, the diagnosis of
fibromyalgia is currently based on subjective pain evaluation and a set
of associated signs and symptoms, which are used to assess the severity
of the disease.

Even though the fibromyalgia is a complex disease with a multitude
of signs and symptoms associated with many organs, the participation
of the Central Nervous System (CNS) in its pathogenesis is broadly ac-
knowledged [33]. Some studies have tried to identify molecular signa-
tures that could explain some of the features of fibromyalgia and have
provided some potential biomarkers. Several polymorphisms linked to
the metabolism and breakdown of neurotransmitters involved in pain
modulation have been identified as specific markers of increased
risk of fibromyalgia [2]. Such polymorphisms have been found for the
serotonin transporter gene 5-HTT [14,68] and the catechol-O-methyl-
transferase (COMT) gene [30,106]. Some environmental factors,
such as viral and bacterial infections [10], e.g. HCV infection [9,78] and
psychological stressors [32], known to produce alterations in the
hypothalamic-pituitary-adrenal (HPA) axis, have been associated with
this disease. Fibromyalgia is prevalent in individuals with chronic pain

attributable to peripheral pain generators, such as rheumatoid arthritis
[1]. At the molecular level, glutamate is elevated in the cerebrospinal
fluid of fibromyalgia patients [26,71,85]. A decrease in insular levels of
y-aminobutyric acid (GABA) has also been described [21]. An inflam-
matory component in the pathogenesis of this disease has also been
proposed: certain cells might trigger and perpetuate chronic pain by re-
leasing chemokines and cytokines, such as IL-6 and IL-8, whose levels
are elevated in the sera of fibromyalgia patients [62,95].

The microbiome has a significant role in maintaining health
[37,47]. Alterations in the gut microbiome have been linked to a
large number of diseases, including intestinal bowel disease (IBD)
[45] and metabolic [43] and neurological [84,89] disorders [40]. The
microbiome has been recurrently associated with the CNS [89], indi-
cating the existence of a gut-brain axis [16,22]. Disturbances in the
microbiome might lead, in some cases, to neural disorders such as
depression or autism. Some changes linked to microbial gut
dysbiosis, understanding dysbiosis as those differences between
healthy individuals and disease-specific patients [35], are also associ-
ated with symptoms used to determine the SS, score in the diagnosis
of fibromyalgia. The gut-brain axis has been proposed as a bidirec-
tional communication system between the gastrointestinal tract and
the brain, involving both neural and humoral mechanisms (reviewed
in [15]). The intestinal GABA produced by the bacteria from gluta-
mate might affect the behaviour of the host, and it might be involved
in anxiety and depression [8,34,57,88]. Alterations in the microbiome
composition can escalate the interactions between bacteria and the
gut immune system due to the breakage of the intestinal barrier,
promoting the release of pro-inflammatory molecules. Such events
have been reported in IBD, where a release of IL-2, IL-17, interferon
and/or TNFP has been observed [41]. Interestingly, several pro-
inflammatory cytokines can increase the permeability of the blood-
brain barrier [16]. The microbiome also has metabolic, immunological
and gut-protecting functions in the host. The fermentation of dietary
carbohydrates by gut bacteria, for example, results in the production
of short-chain fatty acids (SCFAs). These molecules are essential for
the maintenance of the integrity of intestinal barrier [40] and other
health-related functions [77], including the correct development
and maintenance of the blood-brain barrier [7].

These interactions between the microbiome and other functional
systems of the organism has been widely studied. Microbiome data
have been scrutinised in conjunction with host's genome, epigenome,
transcriptome and metabolome [99]. The integration of different
omics data relies mostly on dimension reduction approaches and is
not specific to any omics technology, except for the metabolomics
data. Correlation, regression and network-based approaches have also
been implemented to integrate microbiome data with other omics anal-
yses. As a result, the role of the of the host genome in regulating
microbiome composition has been revealed [28]. Combination of Ge-
nome Wide Association Studies (GWAS) and microbiome-GWAS has
been applied also to assess the impact of diet on microbiome composi-
tion. For example, associations between lactase [5] and variations of vi-
tamin D receptor [98] genes with specific bacteria have been reported.
Metabolomics-microbiome integration studies using correlation ap-
proaches have shown the effect of microbiome on host's insulin sensi-
tivity [70] and on the development and progression of colorectal
cancer [66,100]. Metabolomics - microbiome integration studies
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employing a mix of correlation and network methods have obtained a
comprehensive profile of the existent interactions between intestinal
mucosa and gut microbiome [58]. The authors of these studies have
used standard statistical methods but suggested that new, specific
methods are needed for omics integration, to take into account the par-
ticular omics data characteristics [99].

The aim of this work was to identify potential molecular biomarkers
for fibromyalgia diagnosis and characterisation, employing different
omics technologies: the analysis of microbiome from faeces samples
and metabolomics, cytokine and miRNA profiling using serum samples.

2. Methods
2.1. Cohort recruitment

Individuals included in the study were recruited in two different
hospitals in the Basque Country. Both fibromyalgia patients and healthy
individuals were given a form with questions concerning several life-
style variables (diet, smoking, alcohol consumption, physical exercise,
other diseases and mood),. Blood samples were obtained from fibromy-
algia patients and control individuals. Stool samples were collected
from all participants, stored the samples at 4 °C until they could be de-
livered to the biobank. Blood and stool samples collected in each hospi-
tal were then sent to the Basque Biobank. Samples were aliquoted
samples and frozen at —80 °C. The hospitals clinicians (neurologists
and rheumatologists) were responsible for the fibromyalgia diagnosis.
The following criteria were used:

- Fibromyalgia group: WPI > 7 and SSr (Severity Score) > 5 or WPI be-
tween 3 and 6 and SST > 9. Patients with other diseases with similar
symptoms were discarded.

- Control group: healthy individuals without any clinical manifesta-
tion of fibromyalgia and/or any other similar disease. To reduce the
potential confounding factors associated with lifestyle, they also
were age-paired with the patient group and came from the same
environment.

All donors signed the informed consent form, and the study was ap-
proved by the appropriate ethical committee (CEIC-PI2016037). DNA
from faeces was extracted using PSP Spin Stool DNA Plus kit (STRATEC
Molecular®), following the manufacturer's protocol. Lysis buffer was
added to the frozen samples, to ensure the preservation of nucleic
acids. DNA extractions were then aliquoted into samples of 2.5 pg of
DNA at the concentration of 100 ng/uL and then frozen until sequencing.
All sample processing and distribution were managed by the Basque
Biobank. The summary of the collection workflow can be found in Fig. 1.

2.2. V3-V4 16S rDNA sequencing

DNA amplicon libraries were generated and sequencing performed
following the recommendations of Illumina Inc. Sequencing was con-
ducted at the FISABIO Sequencing Core Facility, as were the quality as-
sessment using prinseq-lite [87] and the sequence joining, employing
FLASH software [53] with default parameters. The complete protocol
can be found in the Supplementary Methods file.

2.3. Microbiome sequences bioinformatics analysis

QIIME2 package (v.2017.10) [12] was employed to perform the Op-
erational Taxonomic Units (OTU) clustering and identification, using de
novo methodology at 97% similarity threshold. Diversity analysis was
performed, and the OTUs were annotated using GreenGenes 13_8 data-
base. The OTU table was exported to SIMCA-9+ 12.0.1 (Umetrics AB,
Umed, Sweden) to perform multivariate analysis and to R programme
(R Development Core Team [108]; http://cran.r-project.org) to conduct
the statistical analysis using phyloseq [60], microbiome [48] and DESeq2
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Fig. 1. Experimental design workflow, from patient recruitment and sample collection to
the arrival of processed samples into the research centre and their examination using
distinct omics techniques.

[52] R packages. CORBATA [49] approach was used to identify and plot
the bacteria in the core microbiome. SIAMCAT tool [107] was used to as-
sess the potential effects of confounding factors such as sex, different
hospitals and distinct drug types. The adjusted p-value < .05 was consid-
ered statistically significant unless stated otherwise. The complete pro-
tocol can be found in the Supplementary Methods file.

24. qPCR validation

From the glutamate cytoplasmatic incorporation and degradation
pathways we selected four genes (gadC, gInA, glsA and glsB) to validate
our findings related to glutamate and microbiome interaction. We de-
signed specific primer pairs with Primer-BLAST from NCBI webtool
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) indicating speci-
ficity for five bacterial families: Bacteroides, Bifidobacterium, Eubacte-
rium, Lachnospiraceae and Ruminococcaceae. Complete procotol can
be found in the Supplementary Methods file.

2.5. Metabolomics methodology

To 40 pL aliquots of human serum, 40 pL of water/0.15% formic acid
(FA) was added. Then, the proteins were precipitated by addition of 120
UL of acetonitrile. To achieve the optimum extraction, after the addition
of acetonitrile, the samples were sonicated for 15 min and agitated at
1400 rpm for 30 min (at 4 °C). Next, they were centrifuged at
14,000 rpm for 30 min at 4 °C. The supernatants were transferred to
vials. Samples were examined using a UPLC system (Acquity, Waters
Inc., Manchester, UK) coupled to a time-of-flight mass spectrometer
(ToF MS, SYNAPT G2, Waters Inc.). A 2.1 x 100 mm, 1.7-pm BEH
amide column (Waters Inc.), kept at 40 °C, was used to separate the
analytes before the MS. The MS was operated in positive electrospray
ionisation full scan mode. Spectral peaks were automatically corrected
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for deviations in the lock mass. The complete specifications can be found
in the Supplementary Methods.

Scaled and normalised data were uploaded to R. Principal Compo-
nent Analysis (PCA) was performed to check whether the differences
between sample metabolomes were due to sample origin and to ac-
count for the autoclaving process used by one of the hospitals. We ex-
cluded the metabolites whose expression differed between the
hospitals, to avoid the bias introduced by the sample origin.
Metabolomic features with >30% of missing values in either hospital
were removed from the analysis. Fold changes and p-values (adjusted
using the Bonferroni method) were computed. Afterwards, differential
peaks were selected for further annotation and metabolite identification
using the METLIN database [29]. The identification was confirmed using
commercial standard injection.

MetScape [44] and Ingenuity Pathway Analysis® were used to map
the identified metabolites to corresponding functionalities in humans.

2.6. Cytokine and miRNA profiling

The cytokine and miRNA profiling was performed by Abcam FirePlex
Service (Boston, USA). The cytokine analysis was conducted using the
FirePlex Human Discovery Cytokine Panel (Abcam, ab227936), allowing
simultaneous profiling of 70 targets in a single well. Each sample was
analysed in duplicate, following the manufacturer's instructions. The
flow cytometer output was analysed using the FirePlex™ Analysis Work-
bench software (http://www.abcam.com/FireflyAnalysisSoftware). Cy-
tokine concentration in a sample was interpolated from the standard
curve obtained in duplicate for each plate. The data was log-normalised,
and then the fold changes and Bonferroni-adjusted p-values were com-
puted to assess the differences between the cytokine profiles.

The miRNAs were profiled using the FirePlex miRNA Assay Core Re-
agent Kit (Abcam, ab218342) employing a custom multiplex panel with
68 miRNAs selected on the basis of literature review. Each sample was
run in singlicate, as previously described [93]. Data analysis was per-
formed using the FirePlex™ Analysis Workbench software. Three
miRNAs used for normalisation, hsa-miR-17-5p, hsa-miR-320b and
hsa-let-7i-5p, were selected employing the geNorm algorithm [96].
The data was log-normalised, and then the fold changes and
Bonferroni-adjusted p-values were computed to evaluate the differ-
ences between the miRNA profiles.

2.7. Omics integration

2.7.1. Microbiome and metabolomics

Spearman's correlation coefficients were computed for relationships
between relative abundances of microbiome bacteria with the identi-
fied genus and normalised individual metabolomic features. A scaled
heatmap was constructed for the correlation matrix, including clado-
gram classification of the variables, using the default clustering method.

2.7.2. Integration of all datasets

We employed the Data Integration Analysis for Biomarker Discovery
(DIABLO) using Latent cOmponents implementation in the mixOmics R
package [79,90]. Thirty-six fibromyalgia and 35 control samples were
used. Microbiome data was normalised using DESeq2 counts function.
The mixOmics block.splsda function, with full weighted design and 10
components, was primarily used to identify the optimal number of com-
ponents, which was defined in 3 methods using the centroid distance
technique. To decide which variables to keep in each component,
models with 10, 5, 5 and 5 randomly selected variables were tested
for the microbiome, metabolomics, cytokines and miRNAs, respectively.
Finally, different model features were obtained and the results were
plotted using mixOmics predefined and ad-hoc functions. This proce-
dure was followed for both the identified-metabolite dataset and the
full dataset of unidentified metabolomics features.

Table 1
Cohort characteristics. The number of individuals included in each group is given in paren-
theses. For Age, WPI and SSr, mean values + standard deviation are shown.

Controls (n = 54) Fibromyalgia-diagnosed

patients (n = 105)

Sex 48.15% Q,51.85% G 69.52% Q, 30.48% &
Age (years) 535+ 124 52.52 4+ 10.3
Age at diagnosis (years) NA 482 4+ 11.1
Time since diagnosis NA 3446
(years)
WPI NA 13.28 £ 3.91
SSr NA 8.62 +2.15
SS1 NA 6.6 + 1.8
SS2 NA 21+04
3. Results

3.1. Clinical samples

One hundred and five confirmed fibromyalgia patients (ACR 2010
modified criteria) [102] and 54 age- and environmentally-paired
healthy individuals were recruited. The latter group consisted of indi-
viduals who did not present any disease or symptoms related to fibro-
myalgia and came from the same environment as the fibromyalgia
patients. The characteristics of the study cohort are shown in Table 1.

During WPI evaluation, >90% of the patients reported pain in the
back, shoulder girdle and the abdomen. Neck pain was described by
85% of patients, while upper and lower arm, hip and upper and lower
leg pain were reported by 70% of fibromyalgia patients. At least 50% of
the patients were affected by jaw and chest pain. The SSy index is the
combination of two sub-indexes, SS; (the severity of 3 main symptoms
in fibromyalgia: fatigue, sleep quality and cognitive problems) and SS,
(the list of associated fibromyalgia symptoms). Approximately 90% of
patients reported moderate to severe scores for the 3 main symptoms
for the SS; sub-index in the week preceding the collection of the sam-
ples. In the evaluation of associated fibromyalgia symptoms (SS,),
70.7% of fibromyalgia patients presented at least 4 symptoms from the
neurological sphere (muscle pain, fatigue, thinking or memory prob-
lems, headache, numbness/tingling, etc.). Among them, 70% used pain-
killers, while approximately 55% were taking antidepressants and
benzodiazepines and approximately 30%, antiepileptic drugs (SUPPLE-
MENTARY TABLE S1). Half of the patients reported some physical exer-
cise and some alcohol consumption, while 23% identified themselves as
smokers.

3.2. V3 + V4 16S rDNA sequencing

We obtained 6,110,564 reads, of which 99.56% passed the quality
check. Of the cleaned reads, the 81.91% (4,982,956) were joined. To de-
cide on the number of reads to which the samples should be rarefied;
we computed the rarefaction curves for both observed OTUs and Shan-
non indices (Supplementary Fig. S1A). After rarefying at 12,000 reads/
sample, the median coverage was 96.35 + 2.33%. Rarefaction step did
not reduce diversity (Supplementary Fig. S1B). Sequencing data was
uploaded to ENA under Project Accession code PRJEB27227.

3.3. Microbiome analysis

The multivariate unsupervised PCA (Fig. 2A) did not show any differ-
ences between the control and the fibromyalgia samples. The super-
vised Partial Least Squares Discriminant Analysis (PLS-DA), however,
provided two sample groups (Fig. 2B) (p-value, 0.0019). In the specific
diversity analysis for 4 alpha-diversity indices (Faith's Phylogenetic Dis-
tance, ace, chaol and observed OTUs) we observed a discrete decrease
in bacterial diversity in fibromyalgia patients although only the Faith's
PD index showed a statistically significant difference (Fig. 2C). This
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Fig. 2. Microbiome multivariate analysis. (A) Principal Component Analysis (PCoA) of the complete cohort. (B) Supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis,
showing the discrimination between the sample groups. (C) Alpha-diversity indexes for each sample group, showing the adjusted p-value computed using Student's t-test.

reduction in bacterial diversity was also observed in the analysis of the
core microbiome at the taxonomic family level. We used CORBATA de-
fault parameters (80% ubiquity, 1% abundance) to identify which bacte-
ria families present in both fibromyalgia and control core microbiomes.
The two core microbiomes contained the same 4 bacteria families (C.
Ruminococcaceae, C. Lachnospiraceae, B. Rikenellaceae and B.
Bacteroidaceae). We observed that the control group presented a
more diverse bacterial community. The comparison of the two sample
groups revealed that Clostridiales Ruminococcaceae was more abun-
dant in the healthy control group than in fibromyalgia patients, al-
though the differences were not statistically significant (Fig. 3A). After
reducing the cut-off to 50% ubiquity, we observed differences between
the core microbiomes of the two groups. Specifically, two bacteria fam-
ilies that were absent in the fibromyalgia core microbiome, the
Bifidobacteriales Bifidobacteriaceae and the Bacteroidales Prevotella,
which were represented in the control core microbiome (Supplemen-
tary Fig. S2A).

We performed a differential OTU analysis (employing DESeq2) of
the core microbiomes in the control and fibromyalgia samples. We
identified 32 OTUs distributed among 3 phyla (Actinobacteria,
Bacteroidetes and Firmicutes) (Fig. 3B) whose abundance differed be-
tween the two groups, with an adjusted p-value of 0.05. In fibromyalgia
patients, the Bacteroidetes and Firmicutes had OTUs both with in-
creased and decreased abundance, and Actinobacteria levels were re-
duced in this group (Fig. 3B).

The number of OTUs with the unassigned genus in Bacteroidaceae
and Lachnospiraceae families were decreased in fibromyalgia samples;
there were also fewer Bifidobacteriaceae and Erysipelotichaceae OTUs

in fibromyalgia patients. The Rikenellaceae family showed an increased
abundance in fibromyalgia patients (Supplementary Table S2).

Finally, at the genus level, the abundance of Bacteroides OTUs was re-
duced in fibromyalgia patients, as were Bifidobacterium, Eubacterium
and Clostridium OTUs. However, the abundances of the genera Dorea,
Roseburia and Alistipes were increased in this group (Fig. 3B).

There were no significant differences between microbiome compo-
sition abundances in the two sexes. We did not observe any significant
association between drug types (as summarized in Supplementary
Table S1) and the relative microbiome abundance at the genus level
(data not shown).

We validated the reduction of the abundance of bacterial species by
qPCR technique. For that, we amplified a set of genes dedicated to the
glutamate incorporation to bacterial cytoplasm and its transformation
to GABA (gadC, glnA, glsA and glsB). We designed specific primers for
amplifying genes from 5 bacterial families that we found to be dimin-
ished in fibromyalgia patients (Bacteroides, Bifidobacterium, Eubacte-
rium, Lachnospiraceae and Ruminococcaceae) (Fig. 3C). We found that
the gene encoding the transporter of glutamate into bacterial cyto-
plasm, represented by gadC, was diminished, as it was also the genes
encoding enzymes involved in the transformation of glutamate to L-
glutamine (glnA, glsA) and to GABA (gadB) (Supplementary Fig. S2B),
in agreement with the taxonomic analysis of 16S rDNA gene.

3.4. Metabolomics analysis

The metabolomics analysis yielded 8543 different metabolic features
defined by retention time and mass/charge. One sample was removed
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due to technical failure. The PCA analysis revealed that the metabolo-
mics profiles differed between hospitals (Supplementary Fig. 3). This
was expected because of the autoclaving performed in one of the hospi-
tals. Thus, to avoid the bias caused by the chemicals released during the
autoclaving procedure, the discriminating hospital features (p = 661),
were removed from the study, as well as the features with >30% of miss-
ing values. Two hundred and twenty-eight features differed between

the fibromyalgia and control groups (Fig. 4A). Of these 228, only 88
had tentative IDs in the METLIN database. Using MS/MS data and chem-
ical standards, we found that the levels of 7 of these metabolites were
significantly altered in the fibromyalgia samples (Supplementary
Table S3): ornithine, L-arginine, Ne-Methyl-L-lysine, L-glutamate, L-glu-
tamine, asymmetric dimethylarginine (ADMA) and platelet activating
factor (PAF-16) (Fig. 4B). Another metabolic feature among the 228
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altered in fibromyalgia was tentatively identified as L-threonine or DL-
homoserine (Fig. 4B). We could not discriminate between these two
metabolites as they are structurally similar and have the same molecu-
lar mass and fragmentation pattern in LC-MS. We also analysed the me-
tabolites described in the literature, such as creatinine [31,55], platelet
activating factor [11] and acetylcarnitine [25]. To infer alterations in
the biological processes and metabolic and functional pathways associ-
ated with the differentially expressed metabolites, we used MetScape
[44] and Ingenuity Pathway Analysis® (QIAGEN) (IPA). The analyses
showed that cell signalling and inflammatory and hypersensitivity re-
sponses were the most relevant biological processes. The most repre-
sented metabolic pathways were arginine, nitric oxide (NO) and
glutamate metabolism.

To study the potential dependencies between microbiome composi-
tion and the host metabolism and metabolome, we examined the corre-
lations between the two datasets. We computed the Spearman's
correlation coefficient for the full set of metabolomics features and
microbiome variables. We did not see any clear association patterns be-
tween the two complete datasets (Supplementary Fig. S4). We also con-
structed a heatmap of the scaled correlations between the bacteria
whose abundance was changed in fibromyalgia and the identified me-
tabolites (Fig. 5A). Metabolites were grouped into two clusters, depend-
ing on the correlations. These were seen mainly with for genera
Bifidobacterium and Dorea, which behaved in an opposite manner. The
first cluster contained 4 metabolites (3-methyl-L-Lysine, PAF C-16,
ADMA, 1-Lysine). The second cluster was formed by 8 metabolites (glu-
tamate, L-threonine/DL-homoserine, glutamine, Ne-methyl-1-Lysine,
creatinine, ornithine, arginine and acetylcarnitine), although the metab-
olite acetylcarnitine behaved differently from the other metabolites in
this cluster. Bifidobacterium, whose abundance was reduced in fibromy-
algia patients, correlated negatively with the first metabolite cluster and
positively with the second one. Dorea, with increased abundance in fi-
bromyalgia patients, correlated positively with the first metabolite clus-
ter and negatively with the second one.

Finally, we checked, using Virtual Metabolic Human [65] database,
whether the different metabolites were produced by the differentially
abundant bacteria. We also wanted to study whether they were made
by the genera for which we found most correlations (Fig. 5A). Thus,
we limited the search to Bifidobacterium and Dorea genera. For gluta-
mate, we identified the metabolites upstream and downstream of its
production/degradation. For lysine, threonine, homoserine, glutamine,
ornithine and arginine (and their modifications), we found that the me-
tabolites themselves, their precursors and degradation products might
had been produced by bacteria. No bacterial associations were found
for creatinine, PAF C-16, ADMA and acetylcarnitine, consequently sug-
gesting that their origin was exclusively human.

3.5. Serum factors and miRNA analysis for a subset of samples

A subset of the samples (n = 72; nc = 36 controls and ng = 36 fibro-
myalgia samples) was used to perform multiplex assays for different
serum molecules, including miRNAs and cytokines. For the multiplex
design, we used 70 molecules and 68 miRNAs that have been associated
with fibromyalgia and/or chronic pain. The protein content assays and
the miRNAs analysis did not show any differences between the fibromy-
algia and the control groups. We observed statistically significant
differences for ten serum proteins: PCSK9, mesothelin, BST2 (1),
procalcitonin, Axl, myoglobin, MIG, TNF-alpha, ICAM2 and IL-9 (|)
with fold changes ranging from 0.76 (lower level in patients) for IL-9
to 1.07 for BST2 (Supplementary Fig. S5A). However, the levels of only
one miRNA differed significantly between the fibromyalgia patients
and the control group, the hsa-miR-335-5p (Supplementary Fig. S5B).
Predicted target genes were obtained using miRWalk 2.0 database
[20]; they were selected if they mapped to at least 8 of the 12 database
options. The enrichment of the miRNA targets was performed using
ConsensuspathDB [42], selecting the targets with a p-value < .01. Nota-
bly, we identified several pathways related to signalling dedicated to
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gene regulation processes. The complete results are provided in
SUPPLEMENTARY TABLE S4.

3.6. Correlations between omics data and clinical data

To determine which differences could be associated with the dis-
ease, we examined the correlations between different diagnostic in-
dexes obtained for the fibromyalgia patients and the omics data
(Fig. 5B, C, D and E). Notably, miRNA data constituted the omics dataset
most correlated with pain indicators (Fig. 5B), followed by the results of
serum protein profiling (Fig. 5C). Metabolomics also showed a consider-
able number of correlations with several pain indexes (Fig. 5D). The
microbiome composition (at the genus level) (Fig. 5E) was the omics
dataset with the weakest correlation with pain indicators.

We also considered possible effects of medication on the observed
differences between the patient and control samples. We checked
whether the samples clustered depending on the drug regimen
followed. However, we did not find any clusters of samples (neither
for serum factors nor for miRNAs) that could be associated with a spe-
cific drug or drug combination. We also checked whether any data cor-
related with distinct drug types; no such correlation was observed (data
not shown).

3.7. Modelisation of microbiome, metabolomics, cytokine and miRNA
datasets

We combined the four datasets of the 71 samples (nc = 36, ng = 35)
that had all the data. This allowed us to discriminate between the con-
trol and fibromyalgia samples when a block sparse PLS-DA model
was applied (block sPLS-DA) (Fig. 6A). The analysis of the individual
contribution of each dataset to the differences showed that the most
correlated datasets were the microbiome composition and the metabo-
lomics data. We also found that the major contributor to the separation
of the sample groups was the microbiome dataset, followed by serum
metabolomics, proteins and, finally, miRNAs (Fig. 6B and C). In this anal-
ysis, we used only the metabolomics dataset containing the identified
metabolites (n = 14). The sPLS-DA analysis using the whole unidenti-
fied metabolomics dataset (n = 1070) showed that using the metabolo-
mics dataset improved the discrimination between the two sample
groups, becoming the strongest factor distinguishing the patients from
controls (Supplementary Fig. S6) although the microbiome showed
slightly better predictive ability.

4. Discussion

In this study, we applied an omics approach and identified a set of
potential molecular markers (Table 2) for the diagnosis of fibromyalgia.

The gut microbiome analysis revealed two clusters (Fig. 2B), one
cluster for fibromyalgia patients (modified 2010 ACR diagnostic
criteria) and the other for individuals without any clinical manifestation
of fibromyalgia. Both core microbiome and alpha-diversity analyses
showed a reduction in the bacterial diversity in the fibromyalgia
group. This is in agreement with the report of reduced microbiota diver-
sity in other pain disorders, such as myalgic encephalomyelitis/chronic
fatigue syndrome [27]. Interestingly, our fibromyalgia microbiome anal-
ysis showed a reduction in the abundance of several bacterial strains as-
sociated with healthy microbiome, such as those linked to SCFA
production (Bifidobacterium, Eubacterium and Lachnospiraceae)
[40,64,77,94], and/or to the reduction in Firmicutes phylum OTUs
([75]; Human Microbiome Project Consortium et al., 2012; [51]),

suggesting dysbiosis events in fibromyalgia patients. Currently, there
is no consensus on the use of the term “dysbiosis” or its meaning [35].
Thus, we would like to clarify that we refer to alterations in microbiome
composition linked to disease (either causing the disease or appearing
as its consequence). Dysbiosis events are also associated with the dis-
ruption of the intestinal barrier; this increases the interactions of bacte-
ria with the immune system of the host, producing local inflammation
[41]. This is supported not only by the large proportion of patients
reporting abdominal pain (>90%) but also by the number of intestinal
diseases considered co-morbidities of fibromyalgia. The maintenance
of the intestinal barrier is associated with the production of SCFAs, in-
cluding butyric acid and butyrate [77]. In fibromyalgia, we found a de-
crease in the abundance of several members of the Lachnospiraceae
family, the bacteria involved in butyric acid production [61]. Butyrate,
the conjugate base of butyric acid, is produced by a small number of bac-
teria, including several Eubacterium species [64], a genus also underrep-
resented in fibromyalgia patients. The reduction in the diversity of
bacteria, especially of those engaged in the production of protective
SCFAs, suggests that this process might be implicated in the develop-
ment of fibromyalgia. If this is the case, the dysbiosis events, as under-
stood here, should be persistent. Thus, we recognise that multiple
time-point data should be acquired and studied; lack of this data is a
limitation of our study. We would like to emphasise that this is a pilot
study and that a follow-up analysis, which might reinforce our findings,
is recommended.

We also found differences between neurotransmitter metabolisms
in the patients and control individuals. We detected a significant in-
crease in the serum levels of glutamate in fibromyalgia patients. More-
over, the abundance of bacteria from Bifidobacterium and Lactobacillus
genera (involved in the transformation of glutamate into GABA;
[4,8,105] was reduced in the fibromyalgia group. This might contribute
to the elevated systemic levels of glutamate. The effect of GABA on the
gut-brain axis, via the vagus nerve, has been described by several au-
thors [8,16]. Glutamate affects the development of pain, via glutamater-
gic synapses [69], and stress can alter the regulation of this pathway
[74]. Stress-related events have also been associated with microbiome
modifications [8]. The 2010 modified ACR criteria for fibromyalgia diag-
nosis include several stress-associated symptoms. Whether such ele-
vated systemic levels of glutamate affect the ENS and alter the CNS is
still unclear. However, some authors have demonstrated the activation
of glutamatergic neurons and glutamate-mediated neurotransmission
in the ENS [13,46,50,84]. As a result of a reduction in bacterial diversity,
the glutamate might enter the host bloodstream after the disruption of
the intestinal barrier by the inflammation caused by the dysbiosis. Inter-
estingly, several patients presented with symptoms associated with IBD
as fibromyalgia co-morbidities (irritable bowel syndrome (46%), ab-
dominal pain (13%) and the pain in the upper abdomen (45%), diar-
rhoea (20%), etc.). The role of microbiome in IBD pathogenesis has
been broadly demonstrated [23,86]; a dysregulation of intestinal im-
mune system caused by microbiome alterations may lead to disease
[91], as demonstrated by patients presenting T-cell responses against
commensal bacteria [73]. Specifically, a reduction in the abundance of
Firmicutes phylum bacteria (observed in fibromyalgia patients) has
been recurrently associated with IBD pathogenesis and progression
[24,63]. These common alterations in microbiome composition could
explain some of the most frequent co-morbidites reported by the pa-
tients in our study.

Furthermore, it has been shown that the blood-brain barrier in-
creases its permeability after a decrease in the numbers of SCFA-
producing bacteria. This alters the tight junction organisation, which

Fig. 5. Heatmap of scaled correlations between the bacteria whose abundance was altered in fibromyalgia and the identified metabolites. The dendrograms were unsupervised. Red arrows
mark the bacteria with increased abundance in fibromyalgia, green arrows, with decreased abundance, and “equals” symbol indicates the OTUs with both increased and decreased
abundance (A). Omics correlations with indexes used in fibromyalgia diagnostics, as defined by ACR 2010 criteria. Only significant correlations (p-value < .05) are coloured. Positive
correlations are indicated in red and negative correlations, in blue. Correlations between circulating miRNA levels (B), circulating cytokine levels (C), identified serum metabolites

(D) and microbiome composition (at genus level) (E).
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can be recovered by colonisation with SCFA-producing bacteria and/or
by the administration of these bacterial metabolites [7]. Cytokines can
also modify the blood-brain barrier permeability [6,103]. Importantly,
glutamate levels increase in the cerebrospinal fluid (CSF) of fibromyal-
gia patients [85]. These data suggest an important role of this neuro-
transmitter in the pathogenesis of fibromyalgia. The manner in which
the peripheral levels of gut microbiome derived neurotransmitters can
affect the brain function is still under debate [84], although several
mechanisms have been proposed. Alterations in the blood-brain barrier
permeability could modify the interchange of serum metabolites with
the brain. Serum levels of 5-HTs are altered in germ-free mice
[101,104]. Even though 5-HT itself is not known to cross the blood-
brain barrier, its precursor can. The microbiome might alter the 5-HT
precursor (e.g. tryptophan) levels, as has been proposed by several au-
thors [67,88]. The same mechanism has been suggested for other gut
microbiome neurotransmitters, such as dopamine and GABA [56,84,97].

It is essential to keep in mind the relationship between GABAergic
pain inhibition and gender as fibromyalgia is 3 times more prevalent
in women than in men [76]. Steroid 17p3-estradiol (E2) suppresses the
GABAergic inhibition in female rats via a sex-specific oestrogen receptor
ERa, mGluR and endocannabinoid-dependent mechanism [92]. This

Table 2
Differences between fibromyalgia and healthy control groups observed using each omics
technique (showing alterations in the fibromyalgia patients).

Increased (1) Decreased (] )

Microbiome Dorea Bifidobacterium
Roseburia Eubacterium
Papillibacter Lachnospiraceae (family)
Subdoligranulum Clostridium
Firmicutes (phylum)
Metabolomics L-glutamine PAF-16

L-threonine/DL-homoserine

L-arginine
ADMA
L-glutamate
Ne-methyl-L-lysine
Ornithine
Cytokines PCSK9 Procalcitonin
Mesothelin AxI-UFO
BST2 Myoglobin
MIG
TNF-alpha
ICAM2
IL-9
miRNAs hsa-miR-335-5p

suppression requires the activation of mGluR type I receptors by gluta-
mate [36]. Therefore, in the presence of excess glutamate, as observed
here in fibromyalgia patients, the pain inhibition by GABA might be sup-
pressed in female patients by this E2-specific regulation. This might
partly explain the increased prevalence of fibromyalgia in the female
population.

The functional analysis of the metabolomics dataset showed that the
most represented pathways were those dedicated to the metabolism of
known neurotransmitters, such as glutamate and serine. Both arginine
and ornithine levels, related to the widespread pain in fibromyalgia, in-
creased in the sera of fibromyalgia patients. Consistently, IPA analysis
identified several pathways related to arginine, such as arginine degra-
dation (I and II) canonical pathways and proline biosynthesis from argi-
nine. These two metabolites are required for the synthesis of nitric oxide
(NO) [31]. NO plays an important role in both acute and chronic pain as
it is a mediator of nociception [17]. However, NO contributes not only to
nociception; it also mediates in analgesia and increases the effect of
morphine on pain inhibition [17]. Here, we also observed a strengthen-
ing of this pathway in fibromyalgia patients (by using IPA). The role of
NO in fibromyalgia pathogenesis has been studied but without reaching
a consensus [72]. Notably, the levels of iNOS isoform increase in female
fibromyalgia sufferers in comparison with healthy controls, while the
levels of constitutive isoforms (nNOS and eNOS) do not change [59]. It
is important to remember that our functional profiling was performed
using the results obtained from the serum sample analysis. One of the
limitations of this study is the metabolomics analysis, and specifically,
the metabolite identification step. We could only identify a small subset
of all the metabolic features observed. Thus, the results obtained here
are constrained by the relatively small number of identified metabolites.
An improved metabolite identification procedure could not only expand
the list of potential metabolite biomarkers but also advance the identi-
fication of potentially affected biological pathways and functionalities.

Patients afflicted by chronic pain are likely to participate in many dif-
ferent long-term treatments, which could affect their microbiome com-
position. Differences in diets and lifestyles will also have some effect.
Thus, it is difficult to be certain whether the detected alterations in the
microbiota are the cause or consequence of fibromyalgia. No association
between microbiome composition and drug type was found for fibro-
myalgia patients. However, it has been demonstrated that clinical
drugs have an impact upon microbiome composition; this seems to be
true for antibiotic, non-antibiotic [54] and psychotropic [19] drugs.
The lack of associations shown here could have been caused by the
small number of patients taking medication from a specific drug family
and/or by the interactions between different drugs prescribed. Proton
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pump inhibitors (PPI), for example, have an anticommensal activity and
were taken by nearly 30% of the patients. One study has reported a re-
duction in the abundance of Lachnospiraceae and Ruminococcaceae in
PPI consumers [39], which is consistent with our observations for fibro-
myalgia patients. Another study obtained similar results and considered
in its analysis the decrease in the abundance of Bifidobacterium genus in
PPI consumers [38]. Both studies have reported a decrease in o-
diversity after PPI administration, which is also consistent with our find-
ings. It has been reported that psychotropics target a similar pattern of
bacterial species irrespective of the degree of their chemical similarity.
This suggests that the anticommensal activity of these drugs is a part
of their mechanism of action rather than a secondary effect [19].

We did not observe any microbiome alterations that could be associ-
ated with antidepressant drugs, either for the tricyclic antidepressants
(taken by 12% of patients) or for the selective serotonin reuptake inhib-
itors (SSRI), 54% of patients). The antiepileptic drugs (here taken by 29%
of patients), such as lithium or valproate, do not have a significant
anticommensal activity. However, lithium may increase the relative
abundance of Ruminococcaceae and reduce the abundance of
Bacteroides, while valproate alters the levels of SCFA [18]; there were
also alterations found in fibromyalgia patients. Finally, while no antimi-
crobial activity has been reported for morphine [83], chronic use of opi-
oids (prescribed to 45% of patients) has been associated with a
reduction in Bacteroidaceae (which we also observed in fibromyalgia
patients) and Ruminococcaceae [3]. Even though no associations be-
tween specific drugs and microbiome composition was found,
probiotics could be useful in the treatment of fibromyalgia as they affect
the microbiome composition [34]. Notably, several authors have used
this approach to treat the chronic fatigue syndrome [82] and one pilot
study has examined the effects of probiotics on fibromyalgia patients
[80]. The authors have shown some improvements, mainly in depres-
sion symptoms and impulsive behaviour, in comparison with the pla-
cebo group [81].

5. Conclusions

To the best of our knowledge, this is the first study to report differ-
ences between the microbiome composition of fibromyalgia patients
and healthy controls. We provided a list of these differences and re-
ported the alterations in the levels of various molecules in the fibromy-
algia sufferers, which might be useful as diagnostic biomarkers. We
examined the functionality of these molecules and found that the
most altered metabolic pathways were related to neurotransmitters,
such as glutamate and nitric oxide. We checked possible interactions
between the gut microbiome and serum metabolome; our analysis
found several individual correlations between the two datasets. We
also demonstrated that the combined microbiome and serum metabo-
lome analyses could discriminate between the fibromyalgia patients
and control individuals. Thus, we report a new set of molecules and bac-
teria that might improve the diagnosis process, compensating for the
current lack of objective biomarkers. Our results should help to shed
some new light on the pathogenesis of this disease, provide biomarkers
within a biological framework and improve our knowledge of this rela-
tively unknown disease.
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